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Abstract

In the present study, thermal-fluid behaviors in a rectangular enclosure of width-to-height aspect ratio 4:1 heated
from below with wall-temperature varied sinusoidally in time is investigated numerically. The main concerns are the
effects of the wall-heating modulation on the threshold of thermal instability and the oscillatory cellular convection heat
transfer performance at the post-critical conditions. For investigation of heating modulation effects at various con-
ditions, inclination of the enclosure is also considered. The results demonstrate that a bottom-wall temperature
modulation of larger amplitude and/or lower frequency generates a relatively stabilizing effect. The trend is the same as
those claimed in the previous linear stability analyses of infinite horizontal fluid layer. However, the present numerical
solutions further disclosed more detailed information about the flow structure as well as the local heat transfer per-
formance, which are useful in understanding of the modulation mechanisms. © 2001 Elsevier Science Ltd. All rights

reserved.

Keywords: Natural convection; Enclosure; Temperature modulation; Oscillatory convection; Thermal instability

1. Introduction

Natural convection in an enclosure always attracts
research interests for its academic significance as well as
its relevance to wide practical applications. For example,
in energy systems, which includes the solar energy col-
lector, nuclear reactor, cryogenic storage, furnace de-
sign, heat exchangers, the multi-layered walls and
double windows in buildings. They are also found in the
solidification and crystal growth of materials processing,
the cooling of energy storage components and electronic
equipment. Even in the natural environment, buoyancy-
driven natural convection appears often, such as in the
areas of large-scale meteorology, geophysics and astro-
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physics. Depending on the orientation of heating and
gravity, there are two categories of thermal-buoyancy-
induced natural convection in enclosures, one is the so-
called thermally driven flows and the typical example is
the case of side-walls heated differentially, in which the
temperature gradient is orthogonal to the buoyancy
force. The other one is characterized by a boundary
condition of heated from below, i.e., the temperature
gradient is parallel to the buoyancy force. The latter is
usually regarded as a thermal instability problem and is
often employed as a theoretical or experimental model
for investigation of instabilities in non-isothermal fluids.
In the past decades, the afore-mentioned two classes of
natural convection with steady wall-heating conditions
have been investigated extensively, as that shown in re-
view articles such as Ostrach [1] and Yang [2].

Heating condition varying with time is possible in
some situations and the associated thermal-flow char-
acteristics become time-dependent. For example, in
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Nomenclature

As width-to-height aspect ratio of the
enclosure, L/H

f dimensional frequency (1/s)

g gravitational acceleration (m/s?)

Gr Grashof number, gBATH* /v*L = Ra/
(Prds)

h h local and average heat transfer coeffi-

cients (W/m? K)
k thermal conductivity of fluid (W/m K)
Nu Nusselt number, hH /k
P pressure (kPa)
Pr Prandtl number, v/«
Ra Rayleigh number, gBATH? /va
T local temperature (K)
U

LV velocity components in X and Y direc-
tions (m/s)
u, v dimensionless velocity components in x
and y directions
X, Y Cartesian coordinates (m)
X,y dimensionless Cartesian coordinates

Greek symbols

o thermal diffusivity (m?/s)

p coefficient of thermal expansion (1/K)

e dimensionless amplitude of the
temperature modulation

Y inclined angle of the enclosure (deg)

v kinematic viscosity (m?/s)

o density (kg/m?)

0 dimensionless temperature function,
(T — T.) /AT
dimensionless stream function

T dimensionless time

Ty dimensionless period of oscillation

w dimensionless frequency of the

temperature modulation

Subscripts

av averaged value

c cold wall or characteristic quantity
h hot wall

max, min  maximum and maximum value

w wall condition

electronic equipments the electronic components are
frequently energized intermittently and, therefore, gen-
erate heat in an unsteady manner. Many investigations
have been conducted to study the effects of the transient
boundary condition on the side-wall heated enclosures.
Effects of step change in side-wall temperature were
studied by Patterson and Imberger [3], Nicollete et al.
[4], and Schladow et al. [5S]. Whereas Yang et al. [6],
Kazmierczak and Chinoda [7], and Lage and Bejan [8]
studied natural convection in enclosures with oscillatory
side-wall temperature. Hyun [9] summarized the pre-
vious works and provided a comprehensive review on
the subject. Recently, Xia et al. [10] considered the im-
posed perturbations at the same order of the first natural
frequency to a vertical side wall and found that the
perturbation destabilizes the flow motion and high am-
plitude leads to lower critical Rayleigh number for flow
starting transition. Kwak and Hyun [11] explored the
resonance phenomenon in enclosure with side-wall
temperature modulation.

As to the buoyancy-driven convection in an enclo-
sure of bottom-wall with time-dependent wall heating,
which is closely related to the present study, early the-
oretical works on infinitely extended configuration are
noteworthy. For an infinite fluid layer confined between
two slippery planes and sinusoidally heated from below,
Venezian [12] applied linearized analysis to explore the
modulating effect on the stability characteristics of mean
gradient and claimed that the onset of convection can be
delayed by a low frequency of modulation. Later on,
Rosentblat and Herbert [13] performed an asymptotic

analysis with low-frequency assumption to study the
problem of bottom-wall temperature modulation. Ro-
sentblat and Tanaka [14] revealed that the flow field
tends to be stabilized at low frequency and high ampli-
tude of modulation. Finucane and Kelly [15], by con-
ducting a nonlinear analysis as well as measurements,
claimed that their results present a similar trend as that
appearing in the previous analytic works, particularly
the amplitude effects of Rosentblat and Tanaka [14].
More comprehensive discussion on modulation effects
on thermal instability of fluid layer heated from below
can be found in Davis’ review article [16] on stability of
periodic flows. Ahlers et al. [17] performed a nonlinear
analysis by a Lorenz-like low-mode model to study re-
sponse of the cellular convection to the periodic modu-
lation of the imposed heat current. It was noted that the
theoretical results agree well with the experiments. The
weakly-nonlinear stability analysis of Roppo et al. [18]
showed that the modulation produces a range of stable
hexagons near the critical condition. Most recently,
Mantle et al. [19] studied modulation effect of bottom-
wall heated periodically in time at high Rayleigh num-
ber. Comparing with the steady one, they found that the
averaged heat transfer can be enhanced by the bottom-
wall temperature modulation. Convection resonance
and heat transfer enhancement in periodically heated
fluid enclosures at high Rayleigh number were recently
studied by Lage and Antohe [20].

In the brief review presented above, it is obvious that
almost all of theoretical studies on the configuration of
heated from below were concerned with linear stability
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analysis of infinite horizontal fluid layers. For further
understanding of the heating modulation effects, how-
ever, there are still some topics worthy of study. For
example, based on the previous results of linear analysis,
we would like to know: (1) Does the heating modulation
effects in an enclosure (layer of finite extension) has the
same trend? (2) What are the detailed flow structure and
temperature field like? (3) Does the heating modulation
have significant effects in an inclined enclosure? (4) What
are the major influences of modulation effects on the
local and overall heat transfer performance? In the
present study, a rectangular enclosure of width-to-height
aspect ratio 4:1 heated from below with or without in-
clination is considered. The same configuration but
without heating modulation has been employed by
Soong et al. [21,22] and Tzeng et al. [23] to study the
flow-mode transition phenomena. In this work the at-
tention is focused on the effects of bottom-wall tem-
perature modulation on the threshold of thermal
instability as well as flow structure and heat transfer
performance under various frequencies and amplitudes.
Effects of inclination are also studied to understand the
transient response of flow mode transition and heat
transfer performance at various inclined angles.

2. Problem statement and governing equations

A two-dimensional inclined rectangular enclosure of
height H, length L =4H, and at inclined angle y is
schematically shown in Fig. 1. The two vertical sidewalls
are adiabatic, and the fluid is heated from below and
cooled at the upper wall. The upper wall is of a constant
temperature T, and the lower wall is subjected to a
temperature oscillatory in time, 7y,(¢) = Ty + eAT
sin(2nft), where Ty stands for the time-mean value of
Tw(¢) and AT = Ty — T = 0 is the characteristic tem-
perature difference; ¢AT and 2nf are dimensional am-
plitude and frequency of the oscillation. Characteristic
temperature difference AT or BAT, where = —(1/p)
(0p/0T)p is the thermal expansion coefficient, is assumed
small enough such that Boussinesq approximation is
appropriate. The stress-work are very small and can be
neglected. The characteristic values of L. = H, t. = H*/u
and V, = o/H, respectively, are taken as length, time and

Fig. 1. Physical model and coordinate system.

velocity scales, where o denotes the thermal diffusivity.
The dimensionless variables are t =t/t., (x,y) = (X,Y)/
Le, (u,v) = (U,V)/V., and the temperature function is
defined as 0 = (T — T;)/AT and T, =T, is the reference
temperature. The dimensionless governing equations
can be cast into the following form:

2_;:%_;:07 (1)
%+u%+v2_;:p,vzu_%-q-PrRasin)w& (2)
%+u%+v%zﬁvzpf%+ﬂﬂacosy-9, 3)
g—kug—o—vg—isza @

where pg = p — p; is the pressure departure from the
reference pressure p,, Ra = gBATH? /av is the Rayleigh
number, and v is the kinematic viscosity of the fluid. No-
slip condition is imposed at four walls of the enclosure.
The boundary conditions in dimensionless form are

u=v=0 at the walls, (5)
00/0x =0 at x =0 and x = 4s, (6)
0 =1+ esin(2rwt) at y =0, (7)
0=0 at y=1, (8)

where As = L/H is the width-to-height aspect ratio of
the rectangular enclosure; © = ¢/t., ¢ and @ = ft. are the
dimensionless time variable, oscillation amplitude and
frequency, respectively; and wt = ft denotes cycle
number of the oscillation.

3. Method of solution

The governing equations, (1)—(4), with the prescribed
boundary conditions, (5)—(8), are discretized by using an
improved version of QUICK scheme [24] and the re-
sultant difference equations are solved by SIMPLEC
algorithm [25]. The grid system used in the present
computation is of staggered and uniform distributions.
Crank—Nicolson implicit scheme is applied for the dis-
cretization of time derivatives. The convergence crite-
rion at each time instant is [¢5i! — ¢f /@bt <1074,
where ¢ denotes the dependent variables, i.e., u, v and 0.
The steady state is reached while the relative deviation
between values of each variable at two consecutive time-
steps is less than 1075, All of the computations are
performed on HP/755 workstations.

To check the validity of the present numerical pro-
cedure, the thermally driven low-Pr fluid flow by side-
wall heating in an enclosure of As = 4 is taken as a case
examined. The natural convection problem was solved
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by a variety of numerical methods and discussed at the
GAMM-Workshop [26]. The case of rigid upper surface
(i.e., the so-called R-R Case), Gr=3x 10* (or
Ra =1800) and Pr=0.015 is selected in the present
numerical test, where Gr is Grashof number and is de-
fined as Gr = gBATH*/v’L = Ra/PrAs. The time step
used in the present test is 10~*. Tables 1 and 2 show
comparisons of the solver and the results of the present
work with some of the numerical results presented at the
GAMM-Workshop [26]. Most of the computations, in-
cluding the present one, employ a high-order scheme for
this problem. It is observed that the fluid motion at
Gr =3 x10* is not steady but oscillating in nature.
Time history of the characteristic quantities presented in
Table 2 are defined as follows: Upax(Unin) = maximum
(minimum) value of |U| at X =L/4, Viax(Vain) =
maximum (minimum) value of |V| at Y =H/2,
¥ nax (Pmin) = maximum (minimum) value of |¥| and f;
denotes the response frequency of the fluids, where YV is
the stream function.

Table 2 shows the comparisons of the present re-
sults with those of the studies listed in Table 1. Among
them, Benhnia and de Vahl Davis’ results on the finest
grid of 321 x 81 points is considered as a benchmark.
Although the present max-min values of local veloci-
ties deviate from the benchmark results, they lie in a
reasonable range spanned by the others. It is most

noteworthy that the response frequency, which is one
of the important characteristics of oscillatory flows,
generated by the present computation is very close to
the benchmark and is the best on the list. As to the
other two flow quantities, ¥.x and ¥y, related to the
strength of the vortices, the present predictions are of
only 3.5% and 3.0% deviations, respectively. Generally
speaking, the present third-order QUICK computa-
tions on the grid of 81 x 21 points is appropriate for
considerations of accuracy as well as saving the com-
putational efforts.

4. Results and discussion
4.1. Critical Rayleigh number for zero modulation

Theoretical analyses have shown that the critical
Rayleigh number for the onset of convection for a
horizontal infinite layer heated from below is
Ra. = 1708. In the present study, the configuration is
no longer infinite but confined by two vertical walls.
According to the results of the previous studies, e.g.,
[27], the boundary effects on the critical condition be-
come small and the critical Rayleigh number ap-
proaches the above theoretical value as As increases. A
rectangular enclosure of As =4 is considered in the

Table 1
Comparison of numerical methods with some contributors at the GAMM-Workshop [26]
Authors Space Time Algorithm
Behnia and de Vahl Davis (pp. 11-18)* Second-order Cent. Diff. Forward Diff. Samarskii-Andreyev ADI
Ben Hadid and Roux (pp. 25-34) Hermitian Method ADI Finite Diff.
Desrayaud et al. (pp. 49-56) Second-order Cent. Diff. ADI Finite Diff.
Grotzbach (pp. 57-64) Schmann’s Method (sec- Explicit Euler Leap Frog 3D TURBIT

ond-order)
Maekawa and Doi (pp. 74-81)

QUICK for Ver.
Ohshima and Ninokata (pp. 8§2-89)
Present

Cent. Diff. for Hor.,

QUICK (second-order)
QUICK (third-order)

(second-order)

Euler Explicit (first-order) ICE With MILUBCG
ICE (second-order)
Crank-Nicolson implicit
(second-order)

AQUA
SIMPLEC

#Page numbers here are the papers appeared in [26].

Table 2

Comparison of computational results for natural convection in a horizontal enclosure (y = 0°) of 4:1 at Gr = 3 x 10*, Pr = 0.015 [26]*
Authors Girds Umin Umax Vmin Vm'dx lIlmin leax fo
Behnia and de Vahl Davis 321 x 81, Unif. 0.4319 0.8411 0.4895 0.9526 0.4291 0.4723 18.05
Ben Hadid and Roux 121 x 41, Non-Unif. 0.5168 0.7744  0.5900  0.8747 - - 18.18
Desrayaud et al. 101 x 33, Unif. 0.5146 0.7266 0.6024  0.8286 0.4401 0.4593 17.89
Grotzbach 16 x 4 x 34, Unif. - 0.6305 - 0.7411 - - 18.09
Mackawa and Doi 80 x 20, Unif. 0.596 0.662 0.685 0.754 - - 17.9
Ohshima and Ninokata 81 x 21, Unif. 0.558 0.645 0.656 0.762 - - 18.1
Present 81 x 21, Unif. 0.5574 0.6882 0.6448 0.7963 0.4441 0.4579 18.08

 fo = oscillation frequency without modulation.
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Fig. 2. The values of Upax, Vinax and W at various Ra.

present numerical computations. Fig. 2 displays the
computational results of Upax, Viax and Wi at dif-
ferent Rayleigh numbers. The results show that Uy,
Vinax and W, slightly increase for Ra < 1800 and al-
most maintain at the order of 10~7. However, a sudden
jump from the order about 107 to 10~! appears at
Ra = 1800, then followed by an ascending trend with
Ra increasing. This jump implies a bifurcation of flow
state from a stationary and conduction state to a cel-
lular convection one. The computations are always
performed from low Ra to a higher one and the in-
crement is 50 near the critical condition. The bifurca-
tion occurs at Ra between 1750 and 1800. Performing
successive computations in this Ra range with incre-
ment of ARa =10 finds that the critical Rayleigh
number Rae is around 1780 for this case of As =4
without bottom-wall heating modulation. Comparing
with the theoretical value of 1708 for infinite fluid
layer, the present value is higher due to the stabilizing
effect in the presence of the side-wall confinement.

4.2. Effect of imposed modulation on onset of convection

As the bottom-wall temperature modulation is ap-
plied, the temperature oscillation influences fluid flow
and heat transfer characteristics in the enclosure. The
responses of the maximum values of velocity, Upax
and V., in the enclosure are fluctuating with the
wall-temperature at each cycles. In Fig. 3, a parameter
characterizing the maximum velocity, (U2, + V2,)"’,
at Ra = 1800, y =0 and w = 1.0 are plotted and used
to illustrate the amplitude effects of imposed temper-
ature modulation. For this configuration of 4s =4 at
Ra = 1800, the onset of thermal instability has been
triggered and the fluid motion is of a cellular pattern.
As shown in Fig. 3, weak modulation of small am-
plitude, ¢ = 0.1, seems less influential on the velocity

10?

T

Pr=0.71, Ra=1800, y=0, ®=1.0

T

T

max
T T T

T

-
<
)
Bau ema

-
o
&

o

10
Cycles (o71)

Fig. 3. Time history of mean maximum velocity at various
modulation amplitudes.

field. With &=0.5, however, the values of
(U2, +V2)" decay with number of modulation cy-

cle in, at least, 20 cycles computed and presented.
With a large amplitude, ¢ = 1.0, the decaying rate of
velocity becomes fast. After 10 cycles, the maximum
velocity has decayed to the order of 10~ and main-
tained almost constant. It is an evidence of the sta-
bilizing effect by the bottom-wall temperature
modulation of high amplitude.

The modulation effects with different oscillation fre-
quencies are shown in Fig. 4 for Ra = 1800, y = 0 and
¢=1.0. At low frequency, w =0.1, the maximum
velocity of the cellular flow is of order O(10) and it
seems almost constant under the modulation. As the
modulation frequency increases to w = 0.5, the flow
tends to settle down quickly to a velocity of order 10~*
in only 5 cycles. At w = 1.0, the velocity decays to order

10‘1 RIIIZXIZZ>  Pr=0.71, Ra=1800, y=0, o=1.0

10-13 s b b b b b b b b b b b
0 5 10 15 20 25 30 35 40 45 50 55 60
Cycles (o1)

Fig. 4. Time history of mean maximum velocity at various
modulation frequencies.
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of 1073 at 10 cycles. At high frequency, w = 2.0, the
velocity decay sustains within 50 cycles and then settles
down. The response of the fluid motion to the suppres-
sion of modulation with low frequency is faster. The
relatively larger frequency may result in slower decaying
but the mean fluid motion seems to be suppressed to a
lower level. In. Fig. 2, it is known that the velocity
components at Ra = 1800 are of the order of O(107!)—
O(1). The maximum velocities of O(107#-10712) at the
large frequencies in Fig. 4 are all small enough. There-
fore, the onset of the convection can be regarded as
being suppressed at w > 0.5.

Fig. 5 illustrates flow characteristics with wall-tem-
perature modulation of ¢ = 1.0 and w = 1.0 at different
Rayleigh numbers. With increasing Rayleigh number,
the rate of velocity decay becomes slow. In the cases
studied, the modulation provides stabilizing effect on the
flow field. For Ra > 2100, the stabilizing effect dimin-
ishes. Comparing to the critical Rayleigh number for
stationary case, Rac = 1780, the onset of thermal in-
stability under the modulation of ¢=1.0 and w=
1.0 occurs at Ra.=2050. An index defined as
(Ra. — Ra)/Ray 1is used to characterize the sta-
bilizing effect of the temperature modulation, and it is
16.67% for the case mentioned above. The plot of
(Ra. — Ray)/Rae versus amplitude ¢ for y =0 and
w=1 1is displayed in Fig. 6. The value of
(Ra. — Ray)/Ray increases with the amplitude ¢, which
implies that the modulation of high amplitude gives
better performance in delaying the onset of convec-
tion. While it is seen in Fig. 7 that the value of
(Ra. — Rae)/Rac decreases with the increasing w. With
the aid of the order-of-magnitude of mean velocity in
Fig. 4, it can be inferred that the imposed temperature
modulation of lower frequency delays the onset of
convection more efficiently.
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-
o
LML e E L e AL

U
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-6 e
10 10 15 20
Cycles (o71)

o

Fig. 5. Time history of mean maximum velocity at various Ra.
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Fig. 6. Effects of modulation amplitude on the critical con-
dition.

Except that of extremely low frequency, e.g., o = 0.1
and Ra = 1800, the above observations indicate that, in
general, the bottom-wall temperature modulation of
large amplitude and low frequency may stabilize the
fluid motion in a horizontal enclosure. The similar
nature can be found in studies of other flow systems,
e.g., an early experiment on the fluid confined in the
narrow gap between two cylinders with rotation
modulation of the inner cylinder conducted by Donnely
and Schwart [28]. Just the same as the present study, he
revealed that a large-amplitude modulation results in a
stronger stabilizing effect. The Rayleigh-Benard thermal
instability has an analogy to the Taylor instability,
Venezian [12] and Rosentblat and Herbert [13] also
concluded the same trend in their theoretical studies of
thermal instability.

20

Pr=0.71, Ra,=1780, y=0, e=1.0

T T T T T T T T T T T T T

Fig. 7. Effects of modulation frequency on the critical con-
dition.
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4.3. Effect of imposed modulation and inclination on
thermal flow fields

As the heated enclosure is inclined at an angle y as
shown in Fig. 1, the convection flow in the enclosure
easily starts moving even at very low Rayleigh number
for the presence of the unbalanced buoyancy effects on
the up-slope (heated) and down-slope (cooled) surfaces.
One objective of the present study is to investigate the
effect of imposed wall-temperature modulation on flow
field in an inclined enclosure. In this part, numerical
computations for cellular convection in an enclosure
with bottom wall (y =0) temperature modulation at
various inclined angles is performed.

The streamlines and isotherms at Ra = 2000 with and
without imposed wall-temperature modulation of ¢ = 1
and o = 1, are shown in Figs. 8-13 for y = 1°,5°, 15°,
25°,50° and 90°, respectively. In these figures, the steady
state (SS) shown in subplot (a) denotes thermal fluid
solutions without modulation and is used as initial

condition in the computations. The subplots (b)-(e)
show the corresponding four phases at 1 =0, 1/41,,
2/41,, and 3/47, of a fully developed modulation cycle,
i.e., after at least 10 cycles. The parameter t, stands for
the dimensionless period of the temperature modulation.
In Fig. 8(a), the enclosure inclined at y = 1°, the flow
structure of the enclosure appears four cells. The ther-
mal flow under the influences of imposed wall-tem-
perature modulation at various inclined angles is
calculated by employing the steady-state solutions as the
initial condition. After a transient stage of several cycles,
the flow and temperature fields will become an oscilla-
tory state of fully developed periodicity for this value of
Ra. The flow patterns are two-cell mode as the bottom-
wall temperature 0, = 2.0 at © = 1/4t, as shown in the
isotherms in Fig. 8(b). In this situation, the bottom wall
has the peak value and the largest temperature difference
in a modulation cycle. The strong buoyancy effect in the
enclosure generates vorticity in the cellular flow, where
the strength of the cellular motion is characterized by

02

(b)

(e)

Fig. 8. Streamlines and isotherms for the case of Pr = 0.71, Ra = 2000, y = 1°, ¢ = 1.0 and w = 1.0. (a) Steady state (SS) as initial
condition of the computation, 6, = 1.0, —1.355< ¥ <1415, 0<60<0.982; and oscillatory solutions at (b) t=0, 6, =1.0,
0<¥P<0.092,0<0<1.0;(c) T =1/41,, 6, =2.0,0< ¥ <0.506,0<0<2.0, (d) 1 =2/41,, 0, = 1.0, —1.585< P <2.084, 0 <0< 1.0;

and (e) t = 3/41,, 0, =0, —0.471 <P <0.454, 0<0<0.212.
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(b)

(d)
01— |
% 0.1
(e)

Fig. 9. Streamlines and isotherms for the case of Pr=0.71, Ra = 2000, y = 5°, ¢ = 1.0 and @ = 1.0. (a) Steady state (SS) as initial
condition of the computation, 6, = 1.0, —1.112 < ¥ < 1.764, 0 < 6 < 1.0; and oscillatory solutions at (b) t =0, 6, = 1.0, 0 < ¥ < 0.350,
0<0<1.0; (¢) t=1/41,, 0, =2.0, 0<S¥P<2.159, 0<0<2.0; (d) 1=2/41p, 0, =1.0, —2.775< ¥ <3.609, 0<0<1.187; and (e)

T =23/41,, 0, =0, —0.494 <V <0.545, 0< 0 <0.219.

the absolute value of the stream-function. It is observed
that the flow is accelerating due to the vorticity en-
hancement and transits to three-cell structure at
T = 2/41,, as shown in Fig. 8(d). As © > 1/4x,, the wall-
temperature is decreasing and the vorticity, which sup-
plied by the buoyancy effect, is also decreasing. As
shown in Fig. 8(e), at t = 3 /41, the strength of the three
cells in the enclosure become weak and then turn to
almost stationary at © = 4/47, or © = 0 in Fig. 8(a). For
a new cycle, the wall-temperature and thus the buoyancy
force are increasing as 7 > 0 and the flow vorticity is
generated. Therefore, the flow begins accelerating and
forms two-cell and, then, three-cell structure. The flow
field transition is repeated cycle by cycle due to the wall
temperature modulation.

As the inclined angle increasing, the flow mode
transition occurs, i.e., three-cell structure at y = 5° in
Fig. 9(a), two-in-one cell mode at y = 15°,25° and 50°,
as illustrated in Figs. 10(a), 11(a), and 12(a), respec-
tively. At the further high inclination up to y = 90°,

Fig. 13(a), the flow fields are of uni-cell mode some-
what similar to that at 50°. Effects of inclination on the
flow mode transition without modulation has been at-
tacked in detail in a previous work by Soong et al. [22].
With the increasing inclination, the flow structure be-
comes simpler with the number of the cells reduced, but
the strength of the cellular motion can be enhanced and
secondary vortices may be induced in the corner re-
gions. In Figs. 8-13, it is also observed that the abso-
lute value of the maximum stream-function or the
strength of the cellular motion increases with the in-
clination. The influences of the temperature modulation
on the flow structure and isotherm patterns become less
apparent at large inclined angles. Table 3 summarizes
the flow mode transition at various inclined angles,
where “C” designates the vortex cell producing in the
enclosure and “S” denotes the secondary vortex ap-
pearing at corners. In Table 3, it is noted that the
number of the vortex cells reduces with increasing in-
clination but the induced secondary vortex occurs and
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Fig. 10. Streamlines and isotherms for the case of Pr = 0.71, Ra = 2000, y = 15°, ¢ = 1.0 and @ = 1.0. (a) Steady state (SS) as initial
condition of the computation, 6, = 1.0, 0 < ¥ <2.584, 0 <0< 1.0; and oscillatory solutions at (b) t =0, 6, = 1.0, 0< ¥ <0.976,
0<0<1.0; (c) Tt=1/41y, 0, =2.0, 0<P<4.622, 0<0<2.0; (d) 1 =2/47,, 0, =10, —2.150< P <4.115, 0<0<1.222; and (e)

T =3/41,, Oy =0, —0.351 < ¥ <0.605, 0<0<0.231.

grows, see also the corresponding flow patterns shown
in Figs. 8-13.

4.4. Responses of the local temperature

In order to understand the difference in local re-
sponses, it is very significant to examine the local
temperature variations under the condition of bottom-
wall temperature modulation. Nine locations at which
the variations of local temperature to be examined are
shown in Fig. 14(a), ie., 6,(x,y) = (0,0.25), 6,(0,0.5),
05(0,0.75),  04(0.5,0.25), 05(0.5,0.5), 06(0.5,0.75),
07(1,0.25), 05(1,0.5), and 09(1,0.75), are examined.
For generality, a case of inclined enclosure at
Ra=2000 and y=15°¢=1.0 and w=1.0 in Fig.
14(b) is considered. The forcing function of the bot-
tom-wall temperature, 0y, is also plotted as a reference.
It is observed that, at the same station of x = constant,

the responses at the locations near the bottom-wall,
ie., 0,0, and 0,, are of larger amplitudes and less
phase-lag since their locations are close to the source of
the temperature modulation at y=0. On a line of
y = constant, e.g., the line of y = 0.5, the temperature
at the leftmost (low end) location, 60,, shows relatively
more obvious temperature oscillation; while that at the
rightmost (highest end) on the same line, 65, is of least
phase-lag. In summary, modulation effects are more
remarkable in the area of the down-left corner, e.g., the
locations of 6, 6, and 60, in Fig. 14(a). Noticeable
phase-lag appears on the centerline of x = 0.5; whereas
the local temperature responses on the line of x = 1.0
are almost in phase with (or of one-period lag) the
forcing modulation.

In examining the corresponding flow patterns at
y = 15° shown in Fig. 10, it is found that, at time around
7 = 3 /41, the cellular motion is relatively weak and the
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Fig. 11. Streamlines and isotherms for the case of Pr = 0.71, Ra = 2000, y = 25°, ¢ = 1.0 and w = 1.0. (a) Steady state (SS) as initial
condition of the computation, 6, = 1.0, 0 < ¥ <3.045, 0<0< 1.0; and oscillatory solutions at (b) t=0, 6, =1.0, 0< ¥ <0.157,
0<0<1.0;(c)t=1/41,, 0, =2.0,0< P <5.765,0<0<2.0; (d)  =2/47,, 0, = 1.0, 0< ¥ <4.266, 0 <0< 1.267; and (e) © = 3 /41y,

0, =0, —0.039 < ¥ <0.573, 0< 0<0.256.

temperature gradient in the whole is quite small. In Fig.
14, the temperature responses at the nine typical loca-
tions display a common feature, i.e., the difference in
local temperatures diminishes in the course of 0, de-
creasing. All the local temperatures tend to approach the
temporal value of the bottom-wall temperature, 0y, at an
instant around t = 0.827,. It is noted that the local
temperature differences are small and then the buoyancy
is weak in the period of t = 0.71,, to 0.85t,,. This thermal
characteristic underlies the relative weakness of the
cellular flow shown at t = 3/4t,,. The flow behaviors in
the cases at the other inclined angles have the similar
nature, see Figs. 8-13.

4.5. Modulation effects on heat transfer rates

Fig. 15 shows the time series of averaged heat
transfer rate on the hot wall (y = 0) and the cold wall

(y =1). The average Nusselt number, Nu,,, is calcu-
lated by using Simpson’s rule for numerical integra-
tion over the wall. By comparing with the forcing
oscillation of the bottom-wall temperature, either the
hot and cold walls are out of phase. The presence of
the phase leading and lag implies that the fluids need
time to reflect the variation of the bottom-wall tem-
perature. It is noted that the situation is different from
the stationary case, in which the heat transfer rates on
the bottom and top walls are balanced. In this oscil-
latory case, the instantaneous difference between the
heat transfer rates of bottom-wall and the top-wall is
attributed to the transient enthalpy change of fluids in
the enclosure. Fig. 16 illustrates the phase leading and
lag of averaged Nusselt numbers at various inclined
angles. The phase leading and lag become small and
approach constant values with increasing inclined an-
gles. Due to the strong cellular motion in the en-
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Fig. 12. Streamlines and isotherms for the case of Pr = 0.71, Ra = 2000, y = 50°, ¢ = 1.0 and @ = 1.0. (a) Steady state (SS) as initial
condition of the computation, 6, = 1.0, 0 < ¥ <4.238, 0<6<1.0; and oscillatory solutions at (b) t =0, 6, = 1.0, 0< ¥ <2.775,
0<0<1.0; (¢) t=1/41,, 0, =2.0, 0< P <7886, 0<0<2.0; (d) 1=2/41p, 0, =1.0, —0.019< ¥ <5.449, 0<0<1.318; and (e)

T=3/41,, 0, =0, —0.145< ¥ <0.624, 0< 0<0.279.

closure at larger inclined angles, heat transfer is en-
hanced and the duration time for response can thus be
shortened.

Fig. 17 shows the influences of inclination on the
averaged heat transfer at Ra = 2000 with and without
imposed wall-temperature modulation. For this slightly
supercritical condition with respect to a horizontal en-
closure, the modulation at small inclined angles may
provide a stabilizing effect to suppress the occurrence of
the multi-cell motion in the enclosure. Therefore, the
modulation effects for y < 3° alleviate the heat transfer
rates as that shown in Fig. 17. For the cases of higher
inclination, the cellular motion in the enclosure becomes
strong enough. Bottom-wall temperature modulation
cannot bring the flow field to a conduction-dominated
state but turn to excite the flow oscillation. The heat
transfer enhancement is thus presented and increased
with the inclined angle. The modulation effect on heat

transfer enhancement becomes saturated at large in-
clined angle.

5. Concluding remarks

The effects of bottom-wall temperature modulation
on the threshold of thermal instability and the oscilla-
tory cellular convection in a rectangular enclosure of
aspect ratio 4:1 have been investigated numerically.
From the present results the following conclusions can
be drawn.

1. Bottom-wall temperature modulation of high
amplitude and/or low frequency provides a stabilizing
effect on the onset of thermal instability associated to the
bifurcation of conduction-dominated state turning to
convection one in a horizontal enclosure heated from
below.
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Fig. 13. Streamlines and isotherms for the case of Pr = 0.71, Ra = 2000, y = 90°, ¢ = 1.0 and w = 1.0. (a) Steady state (SS) as initial
condition of the computation, 6, = 1.0, 0 < ¥ <4.965, 0< 0< 1.0; and oscillatory solutions at (b) =0, 6, = 1.0, 0< ¥ <3.505,
0<0<1.0; (c) T=1/41p, 0, =2.0, 0P <8816, 0<0<2.0; (d) ©=2/41,, 0, =10, —0.047< ¥V <5.775, 0<0<1.327; and (e)

T =3/41,, O =0, —0.287 < ¥ <0.558, 0 < 0<0.286.

Table 3

The flow structure in the enclosure with imposed modulation at different inclined angles®
y SS T

0 1/4, 2/41, 3/4x,

1° 4C 0 2C 3C 3C
5° 3C 2in1C 2in1C 3C 3C, 28
15° 2C 2inl1C 2inl1C 3C 3C, 28
25¢° 2in1C 2in1C 2in1C 2inlC, 1S 2inlC, 2inlS and 1S
50° 2inlC 1C 1C 1C, 1S 1C, 28
70° 1C 1C 1C 1C, 1S 1C, 2inlS
90° 1C 1C 1C 1C, 1S 1C, 2inlS

4C = cell; S = secondary vortices; SS = steady state; 2in1C = two-in-one cell; 2inlS = two-in-one secondary cell.

2. The flow structure and the isotherm pattern are
altered periodically with the temperature modulation.
The cyclic changes in flow structure and the number of
cells are more remarkable at the lower inclined angles.
At higher inclination angles, e.g., y = 50°, the uni-cell
flow structure is quite stable.

3. As the fluid temperature increases with the bot-
tom-wall temperature, the convection velocity of the

fluids raised up by the thermal buoyancy effect. Whereas
the local fluid temperature approaches to be uniform
around the trough of the oscillating bottom-wall tem-
perature, the thermal buoyancy effect and, therefore, the
strength of the cellular flow are diminished. These
phenomena occur at the time instant of t = 0.87,.

4. In an inclined enclosure, time series of the local
temperature show that the fluids around the corner of
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Fig. 14. Local temperature variations for Pr = 0.71, Ra = 2000,
y=15°¢=1.0and o = 1.0.
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Fig. 15. Time variations of averaged heat transfer rates over
the hot and cold walls for Pr=0.71, Ra = 2000, y=15°,
e=1.0and o = 1.0.
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Fig. 16. Phase leading and lag of Nu responses at various in-
clined angles for Pr = 0.71, Ra = 2000, ¢ = 1.0 and w = 1.0.
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Fig. 17. Modulation effects on averaged Nusselt numbers at
various inclined angles for Pr = 0.71, Ra = 2000, ¢ = 1.0 and
w=1.0.

hot wall of the lower-end side are of relatively larger
amplitude and obvious phase lag; while the temperature
responses on the high-end side-wall are almost in phase
with the modulation.

5. It is found that the responses of both hot and cold
walls are not in the same phase with that of the modu-
lation. The cold wall responds with phase leading and
the hot wall phase lag. The phase leading and lag of the
heat transfer responses reduce with the increasing angle
of inclination.

6. At higher angles, the heat transfer rate can be
enhanced with imposed modulation. The fluid behaviors
at y < 3° are more likely to the horizontal case, in which
the modulation may suppress the onset of thermal in-
stability and degrade the heat transfer rate. Out of this
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range, the temperature modulation always enhances
heat transfer and the enhancement seems to approach a
saturate value.

References

[11 S. Ostrach, Natural convection in enclosures, ASME
J. Heat Transfer 110 (1988) 1175-1190.

[2] K.T. Yang, Transitions and bifurcations in laminar buoy-
ant flows in confined enclosures, ASME J. Heat Transfer
110 (1988) 1191-1204.

[3] J. Patterson, J. Imberger, Unsteady natural convection in a
rectangular cavity, J. Fluid Mech. 100 (1980) 65-86.

[4] V.F. Nicollete, K.T. Yang, J.R. Lloyd, Transient cooling
by natural convection in a two-dimensional square en-
closure, Int. J. Heat Mass Transfer 28 (1985) 1721-1732.

[5] S.D. Schladow, J.C. Patterson, R.L. Street, Transition flow
in a side-heated cavity at high Rayleigh number: a
numerical study, J. Fluid Mech. 200 (1989) 121-148.

[6] H.Q. Yang, K.T. Yang, Q. Xia, Periodic laminar convec-
tion in a tall vertical cavity, Int. J. Heat Mass Transfer 32
(11) (1989) 2199-2207.

[7] M. Kazmierczak, Z. Chinoda, Buoyancy-driven flow in an
enclosure with time periodic boundary conditions, Int.
J. Heat Mass Transfer 35 (6) (1992) 1507-1518.

[8] J.L. Lage, A. Bejan, The resonance of natural convection
in an enclosure heated periodically from the side, Int.
J. Heat Mass Transfer 36 (8) (1993) 2027-2038.

[9] J.M. Hyun, Unsteady buoyant convection in an enclosure,
Adv. Heat Transfer 34 (1994) 277-320.

[10] Q. Xia, K.T. Yang, D. Mukutmoni, Effect of imposed wall
temperature oscillations on the stability of natural convec-
tion in a square enclosure, ASME J. Heat Transfer 117
(1995) 113-120.

[11] H.S. Kwak, J.M. Hyun, Natural convection in an en-
closure having a vertical sidewall with time-varying tem-
perature, J. Fluid Mech. 329 (1996) 65-88.

[12] G. Venezian, Effect of modulation on the onset of thermal
convection, J. Fluid Mech. 35 (1969) 243-254.

[13] S. Rosentblat, D.M. Herbert, Low-frequency modulation
of thermal instability, J. Fluid Mech. 43 (1970) 385-398.

[14] S. Rosentblat, G.A. Tanaka, Modulation of thermal
convection instability, Phys. Fluids 14 (7) (1971) 1319-
1322.

[15] R.G. Finucane, R.E. Kelly, Onset of instability in a fluid
layer heated sinusoidally from below, Int. J. Heat Mass
Transfer 19 (1976) 71-85.

[16] S.H. Davis, The stability of time-periodic flows, Annu.
Rev. Fluid Mech. 8 (1976) 57-74.

[17] G. Ahlers, P.C. Hohenberg, M. Lucke, Externally modu-
lated Rayleigh-Benard convection: experiment and theory,
Phys. Rev. Lett. 53 (1) (1984) 48-51.

[18] M.N. Roppo, S.H. Davis, S. Rosentblat, Benard convec-
tion with time-periodic heating, Phys. Fluids 27 (4) (1984)
796-803.

[19] J. Mantle, M. Kazmierczak, B. Hiawy, The effect of
temperature modulation on natural convection in a hori-
zontal layer heated from below: high-Rayleigh-number
experiments, ASME J. Heat Transfer 116 (1994) 614-620.

[20] J.L. Lage, B.V. Antohe, Convection resonance and heat
transfer enhancement of periodically heated fluid en-
closures, in: J. Padet, F. Arinc (Eds.), in: Transient
Convective Heat Transfer, Begell House, New York,
1997, pp. 259-268.

[21] C.Y. Soong, P.Y. Tzeng, T.S. Sheu, Influences of initial
and boundary conditions on numerical solutions of lam-
inar natural convection in enclosures, in: C. Taylor, P.
Durbetaki (Eds.), Numerical Methods in Laminar and
Turbulent Flow, vol. 9, Part 1, Pineridge Press, UK, 1995,
pp. 656-665.

[22] C.Y. Soong, P.Y. Tzeng, D.C. Chiang, T.S. Sheu, Nu-
merical study on mode-transition of natural convection in
differentially heated inclined enclosures, Int. J. Heat Mass
Transfer 39 (6) (1996) 1507-1518.

[23] P.Y. Tzeng, C.Y. Soong, T.S. Sheu, Numerical investiga-
tion of transient flow-mode transition of laminar natural
convection in an inclined enclosures, Numer. Heat Trans-
fer A 31 (1997) 193-206.

[24] T. Hayase, J.A.C. Humphrey, R. Greif, A consistently
formulated QUICK scheme for fast and stable convergence
using finite-volume iterative calculation procedures,
J. Comp. Phys. 98 (1992) 108-118.

[25] P. van Doormaal, G.D. Raithby, Enhancements of
SIMPLE method for predicting incompressible fluid flow,
Numer. Heat Transfer (7) (1984) 147-163.

[26] B. Roux, Numerical simulation of oscillatory convection in
low-Pr fluids, A GAMM Workshop, Friedr. Vieweg and
Sohn Verlagsgescllschaft mbH, Braunschweig, 1990.

[271 J. Zierep (Ed.), Convective Transport and Instability
Phenomena, G. Braum, GmbH, Karlsruhe, Germany,
1982.

[28] R.J. Donnelly, K.W. Schwart, Experiments on the stability
of viscous flow between rotating cylinders, Proc. R. Soc.
Lond. A 208 (1965) 531-546.



